Multiple.
results
(asterisks: bool = True, decimals=3)¶Give event study result in a table format.
asterisks (bool, optional) – Add asterisks to CAR value based on significance of p-value, by default True
decimals (int or list, optional) – Round the value with the number of decimal specified, by default 3. decimals can either be an integer, in this case all value will be round at the same decimals, or a list of 6 decimals, in this case each columns will be round based on its respective number of decimal.
Note
When asterisks is set as True, CAR’s are converted to string type. To make further computation on CARs possible set asterisks to False.
AAR and AAR’s variance, CAAR and CAAR’s variance, T-stat and P-value, for each T in the event window.
pandas.DataFrame
Note
The function return a fully working pandas DataFrame. All pandas method can be used on it, especially exporting method (to_csv, to_excel,…)
Example
Get results of a market model event study on an aggregate of events (Apple Inc. 10-K form releases) imported from a csv, with specific number of decimal for each column:
>>> events = es.Multiple.from_csv(
... 'AAPL_10K.csv',
... es.Single.FamaFrench_3factor,
... event_window = (-5,+5),
... date_format = '%d/%m/%Y'
... )
>>> events.results(decimals = [3,5,3,5,2,2])
AAR |
Variance AAR |
CAAR |
Variance CAAR |
T-stat |
P-value |
|
---|---|---|---|---|---|---|
-5 |
-0 |
3e-05 |
-0.0 |
3e-05 |
-0.09 |
0.47 |
-4 |
-0.002 |
3e-05 |
-0.003 |
5e-05 |
-0.35 |
0.36 |
-3 |
0.009 |
3e-05 |
0.007 |
8e-05 |
0.79 |
0.22 |
-2 |
0.003 |
3e-05 |
0.01 |
0.0001 |
1.03 |
0.15 |
-1 |
0.008 |
3e-05 |
0.018 * |
0.00013 |
1.61 |
0.05 |
0 |
-0 |
3e-05 |
0.018 * |
0.00015 |
1.46 |
0.07 |
1 |
-0.006 |
3e-05 |
0.012 |
0.00018 |
0.88 |
0.19 |
2 |
0.006 |
3e-05 |
0.017 |
0.0002 |
1.22 |
0.11 |
3 |
0 |
3e-05 |
0.018 |
0.00023 |
1.17 |
0.12 |
4 |
-0.007 |
3e-05 |
0.011 |
0.00025 |
0.69 |
0.24 |
5 |
0.001 |
3e-05 |
0.012 |
0.00028 |
0.72 |
0.24 |
Note
Significance level: *** at 99%, ** at 95%, * at 90%