Multiple.
get_CAR_dist
(decimals=3)¶Give CARs’ distribution descriptive statistics in a table format.
decimals (int or list, optional) – Round the value with the number of decimal specified, by default 3. decimals can either be an integer, in this case all value will be round at the same decimals, or a list of 6 decimals, in this case each columns will be round based on its respective number of decimal.
CARs’ descriptive statistics
pandas.DataFrame
Note
The function return a fully working pandas DataFrame. All pandas method can be used on it, especially exporting method (to_csv, to_excel,…)
Example
Get CARs’ descriptive statistics of a market model event study on an aggregate of events (Apple Inc. 10-K release) imported from a csv, with specific number of decimal for each column:
>>> events = es.Multiple.from_csv(
... 'AAPL_10K.csv',
... es.Single.FamaFrench_3factor,
... event_window = (-5,+5),
... date_format = '%d/%m/%Y'
... )
>>> events.get_CAR_dist(decimals = 4)
Mean |
Variance |
Kurtosis |
Min |
Quantile 25% |
Quantile 50% |
Quantile 75% |
Max |
|
---|---|---|---|---|---|---|---|---|
-5 |
-0 |
0.001 |
0.061 |
-0.052 |
-0.014 |
0.001 |
0.015 |
0.047 |
-4 |
-0.003 |
0.001 |
0.247 |
-0.091 |
-0.022 |
0.003 |
0.015 |
0.081 |
-3 |
0.007 |
0.002 |
0.532 |
-0.082 |
-0.026 |
0.006 |
0.027 |
0.139 |
-2 |
0.01 |
0.002 |
-0.025 |
-0.088 |
-0.021 |
0.002 |
0.033 |
0.115 |
-1 |
0.018 |
0.003 |
-0.065 |
-0.091 |
-0.012 |
0.02 |
0.041 |
0.138 |
0 |
0.018 |
0.003 |
-0.724 |
-0.084 |
-0.012 |
0.012 |
0.057 |
0.128 |
1 |
0.012 |
0.004 |
-0.613 |
-0.076 |
-0.024 |
0.003 |
0.059 |
0.143 |
2 |
0.017 |
0.005 |
-0.55 |
-0.117 |
-0.026 |
0.024 |
0.057 |
0.156 |
3 |
0.018 |
0.005 |
0.289 |
-0.162 |
-0.032 |
0.027 |
0.057 |
0.17 |
4 |
0.011 |
0.007 |
2.996 |
-0.282 |
-0.039 |
0.035 |
0.052 |
0.178 |
5 |
0.012 |
0.008 |
1.629 |
-0.266 |
-0.05 |
0.035 |
0.064 |
0.174 |
Note
Significance level: *** at 99%, ** at 95%, * at 90%